Supramolecular Hydrogels from a Tripeptide and Carbon Nano-Onions for Biological Applications

Abstract

Nanocomposite hydrogels have attracted researchers’ attention in recent years to achieve superior performances in a variety of materials applications. In this work, we describe the outcome of three different strategies to combine a self-assembling tripeptide and carbon nano-onions (CNOs), through covalent and non-covalent approaches, into supramolecular and nanostructured hydrogels. Importantly, the tripeptide coated the nano-onions and extended their aqueous dispersions’ stability by several hours. Furthermore, CNOs could be loaded in the tripeptide hydrogels at the highest level ever reported for nanocarbons, indicating high compatibility between the components. The materials were formed in phosphate-buffered solutions, thus paving the way for biological applications, and were characterized by several spectroscopic, microscopic, thermogravimetric, and rheological techniques. In vitro experiments demonstrated excellent cytocompatibility.

Publication
Nanomaterials
Michał Bartkowski
Michał Bartkowski
Postdoctoral Researcher

Funded by Science Foundation Ireland (SFI) - Grant ID 2/FFP-A/11067

Silvia Giordani
Silvia Giordani
Full Professor Chair of Nanomaterials

My research interests are in the design, synthesis, and characterization of hybrid smart nanomaterials for biomedical, energy and environmental applications